Biogeosciences Discuss., 6, 7821–7852, 2009 www.biogeosciences-discuss.net/6/7821/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Effects of multiple environmental factors on CO₂ emission and CH₄ uptake from old-growth forest soils

H. Fang¹, G. Yu¹, S. Cheng², S. Li¹, Y. Wang³, J. Yan⁴, M. Wang⁵, M. Cao⁶, and M. Zhou⁷

¹Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

²Graduate University of Chinese Academy of Sciences, Beijing 100049, China
 ³Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 ⁴South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
 ⁵Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
 ⁶Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China

⁷College of Ecology and Environmental Sciences, Inner Mongolia Agricultural University, Hohhot 010019, China

Received: 31 May 2009 – Accepted: 8 June 2009 – Published: 31 July 2009

Correspondence to: H. Fang (huajunfang@yahoo.com.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

BGD 6, 7821-7852, 2009 Effects on CO₂ emission and CH₄ uptake H. Fang et al. Title Page Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

Abstract

To assess contribution of multiple environmental factors to actual carbon exchanges between the atmosphere and forest soils, four old-growth forests referred to as boreal coniferous forest, temperate needle-broadleaved mixed forest, subtropical evergreen broadleaved forest and tropical seasonal rain forest were selected along the eastern 5 China. In each old-growth forest, soil CO_2 and CH_4 fluxes were measured for three years using the static chamber and gas chromatography technique. Soil temperature and moisture at the 10 cm depth were measured simultaneously with the greenhouse gas measurements. Inorganic N (NH $_{4}^{+}$ -N and NO $_{3}^{-}$ -N) in the 0–10 cm was determined monthly. From north to south, annual mean CO_2 flux ranged from 18.09±0.22 10 to 35.40 ± 2.24 Mg CO₂ ha⁻¹ yr⁻¹ and annual mean CH₄ flux ranged from -0.04 ± 0.11 to -5.15 ± 0.96 kg CH₄ ha⁻¹ yr⁻¹. Soil CO₂ fluxes in the old-growth forests were mainly driven by soil temperature, followed by soil moisture and NO₃⁻-N. Based on the gradient theory of exchange of time and space, increase in air temperature in the future would promote soil CO₂ emission in the old-growth forests. The responses of soil CH₄ 15 uptake to warming were dependent upon the critical temperature in forest. In addition, the NO₃-N promotion to CO₂ emission could partially attribute to the compound effects of high nitrate stimulation on soil microbe activities and increased decomposability of organic materials. The mechanism of NH₄⁺ inhibition to CH₄ uptake included both a competitive inhibition of CH_4 mono-oxygenase enzyme and a toxic inhibition by

²⁰ both a competitive inhibition of CH_4 mono-oxygenase enzyme and a toxic inhibition by hydroxylamine or nitrite produced via NH_4^+ oxidation. Overall, increasing in precipitation and nitrogen deposition in eastern China would increase soil CO_2 emission, but decrease soil CH_4 uptake in the old-growth forests.

1 Introduction

Recently, some studies suggest that old-growth forests can continue to sequester carbon and serve as a global carbon dioxide sink (Zhou et al., 2006; Luyssaert et al.,

2008). Most of the sequestered carbon dioxide is stored as slowly decomposing organic matter in litter and soil (Zhou et al., 2006). As an important process of C cycling, soil-atmospheric CO₂ and CH₄ exchanges are driven by many environmental factors including availability and amount of C substrates, temperature, precipitation and soil water content, redox potential and aeration, diffusion, soil texture, soil pH, salinity, sod-5 icity and acidity, ion deficiencies and toxicities and elevated CO₂ and atmospheric N deposition (Dalal and Allen, 2008). Therefore, assessing contribution of multiple environmental factors and precisely estimating carbon exchanges between the atmosphere and forest soils are critical to model prediction of trace gas fluxes. In the past two decades, studies on responses of soil-atmospheric C exchanges to climate change 10 and N deposition in forests mostly focus on manipulative experiments such as warming (Melillo et al., 2002), throughfall exclusion (Davidson et al., 2004; Borken et al., 2006; Sotta et al., 2007), and N addition (Bowden et al., 2004; Micks et al., 2004; Mo et al., 2008; Zhang et al., 2008). However, manipulative experiments could be incompletely equal to natural environmental changes due to transient change of activities of 15 plant roots and soil microorganisms, which could draw various conclusions (Corre et al., 2007; Kleja et al., 2008). For example, addition of N to forest soils may increase (Tessier and Raynal, 2003; Micks et al., 2004), decrease (Chantigny et al., 1999; Bowden et al., 2004) or have no affect on (Prescott et al., 1999; McDowell et al., 2004) soil-atmospheric CO₂ and CH₄ exchanges. Also, the responses of soil respiration to 20 warming include both promotion (Bergner et al., 2004) and acclimation (Luo et al., 2001; Melillo et al., 2002). To our knowledge, only few reports are available in literature on evaluation of the combination effects of multiple environmental factors on CO₂ and CH₄ fluxes from old-growth forest soils under natural conditions.

Environmental gradient method which can deal with a gradual and continuous change in time and space is widely used in studying the responses of C and N processes to climate change (Corre et al., 2007; Kleja et al., 2008). In eastern China, mean annual temperature varies from -7°C in the cold temperate continent monsoon climatic zone of the north to over 26°C in the equatorial monsoon climatic zone of the

BGD 6, 7821-7852, 2009 Effects on CO₂ emission and CH₄ uptake H. Fang et al. Title Page Introduction Abstract Conclusions References Tables **Figures** 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

south (Yu et al., 2008). Mean annual precipitation decreases from about 2200 mm in the south to less 230 mm in the north (Yu et al., 2008). In addition, the total deposition of atmospheric nitrogen peaked over the central South China, with maximum values of $63.5 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ and an average value of $12.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ (Lu and Tian, 2007). Zonal forest ecosystems, from the tropical rain forest in the south to the boreal coniferous forest in the north, along eastern China provide a unique research platform to investigate the effects of multiple environmental factors on soil-atmospheric CO₂ and CH₄ exchanges in old-growth forests.

In this paper, we analyzed three-year data on soil CO_2 and CH_4 fluxes, soil temperature, soil moisture, and mineral N concentrations which were measured from four primary old-growth forests in eastern China. Our specific aims are (1) to compare the difference of soil-atmospheric CO_2 and CH_4 exchanges in different forests; (2) to evaluate the relationship between soil-atmospheric CO_2 and CH_4 exchanges and soil temperature, moisture and soil mineral N (NH_4^+ -N and NO_3^- -N) concentrations.

15 2 Materials and methods

2.1 Study sites

5

Four old-growth forest sites are referred to as Daxinganling boreal coniferous forest, Changbaishan temperate needle-broadleaved mixed forest, Dinghushan subtropical evergreen broad-leaved forest, and Xishuangbanna tropic seasonal rain forest from north to south, hereafter referred to as boreal, temperate, subtropical, and tropical forest, respectively (Fig. 1, Table 1). These forest sites expand from a mean annual temperature of -5.4°C in the boreal forest to 21.4°C in the tropic forest, and annual precipitation from 500 mm in cool temperate climate region to over 1600 mm in tropical and subtropical climate region. The total nitrogen deposition increases from 8.5 kg N ha⁻¹ yr⁻¹ in the boreal to 38.4 kg N ha⁻¹ yr⁻¹ in the subtropical, and then decreases to 18.1 kg N ha⁻¹ yr⁻¹ in the tropic. The boreal forest is a single forest with

Larix gmelinii as the predominant tree species (Jiang et al., 2002). The dominant vegetation species in the temperate forest are *Pinus koriaensis*, *Tilia amurensis*, *Acer mono*, *Quercus mongolica*, and *Fraxinus mandshurica* in the tree layer (Zhang et al., 2006). The major species in the subtropical forest are *Schima superba*, *Syzygium jambos*, *Castanopsis chinensis*, etc. in tree layers (Mo et al., 2008). The most abundant

species in the tropical forest are *Pometia tomentosa*, *Terminalia myriocarpa*, *Myristica yunnanensis*, *Horsfieldia tetratepala*, *Homalium laoticum*, etc. (Werner et al., 2006). The soils are Brown coniferous forest soil, Dark brown soil, Lateritic red soil and Latosol (FAO/UNESCO taxonomy) from north to south, respectively. More extensive description on the sites was given in Table 1.

2.2 Soil CO₂ and CH₄ flux measurements

5

15

At each forest site, three replicate chambers were randomly designated to measure CO_2 and CH_4 fluxes using static chamber and gas chromatography method (Wang and Wang, 2003). The static chambers were made of stainless-steel and consisted of a square collar (length×width×height=50 cm×50 cm×10 cm) and a removable cover chamber (length×width×height=50 cm×50 cm). The square collar was inserted directly into the forest floor about 10 cm below the floor surface, and the cover was

- placed on top during sampling and removed afterwards. A fan 10 cm in diameter was installed on the top wall of each chamber to make turbulence when chamber was closed. 20 White adiabatic cover was added outside of the stainless steel cover to reduce the
- ²⁰ White adiabatic cover was added outside of the stanless steer cover to reduce the impact of direct radiative heating during sampling. The CO_2 effluxes were measured between 09:00 and 11:300 a.m. (China Standard Time, CST) by fitting the chambers to the collars for 30 min. A diurnal study demonstrated that CO_2 and CH_4 fluxes measured from 09:00 to 11:30 a.m. were close to daily means (Tang et al., 2006). The
- four gas samples were taken by 100 mL plastic syringes with intervals of 0, 10, 20 and 30 min after closing the chambers. All gas samples were analyzed within 24 h following gas collection. Soil CO₂ and CH₄ fluxes were calculated based on the rate of change in their concentration within the chamber, which was estimated as the slope of linear re-

gression between concentration and time (Wang and Wang, 2003). All the coefficients of determination (r^2) of the linear regression were greater than 0.95 in our study.

Soil temperature and soil moisture at 10 cm below soil surface were monitored at each chamber simultaneously. Soil temperature was measured using portable tem-

⁵ perature probes (JM624 digital thermometer, Living-Jinming Ltd., China). Volumetric soil moisture (%) was measured using moisture probe meter (MPM160, Meridian Measurement, China). Field measurements were carried out weekly in the growing season (from May to October) and monthly in the non-growing season (from November to April next year).

10 2.3 Soil sampling and mineral N analysis

In the middle ten days of each month during research, mineral soils nearby the gas chambers were taken from 0–10 cm depth using an auger (5 cm in diameter) after careful removal of O-horizon. Soil samples were not collected in non-growing season because soil frozen occurred from November to April next year at the boreal and temperate forest sites. Four samples were collected for each site. Soils were immediately passed through a 2 mm sieve to remove roots, gravel and stones. Soil sample was extracted in 100 ml 0.2 M KCl solution and shaken for 1 h. The soil suspension was subsequently filtered through Whatman No. 40 filter papers for NH_4^+ -N and NO_3^- -N

determination on a continuous-flow autoanalyzer (Bran Luebbe, Germany).

20 2.4 Calculation of Q_{10}

The sensitivity of soil CO_2 flux to soil temperature at 10 cm depth (Q_{10}) was obtained from a coefficient, *B*, in the exponential equation (Eqs. 1 and 2) (Lloyd and Taylor, 1994):

$$R_{\rm s} = R_0 e^{BT} \tag{1}$$

25
$$Q_{10} = R_{T+10}/R_T = e^{10B}$$
 (2)

7827

where, R_s is the soil respiration rate, T is the soil temperature, R_0 is the soil respiration rate as soil temperature is equal to zero, and B is regression coefficients.

2.5 Statistical analysis

A repeated measures analyses of variance (ANOVA) was performed on monthly means
 to test the difference of soil temperature, moisture, mineral N contents, and soil C fluxes by forests and seasons. Additionally, the relationships between CO₂ and CH₄ fluxes and soil properties (temperature, moisture and mineral N) were examined using linear or nonlinear regression models fitting. Mean Square Error (MSE) and R² of the model parameters were used to determine goodness-of-fit. All statistical analyses
 were performed using SAS software (SAS Institute, 2001). A *P*-value<0.05 was used to reject the null hypothesis that the model is not significant.

3 Results

3.1 Seasonal variations of environmental conditions

Soil temperature and moisture showed clear seasonal courses (Fig. 2a). High soil temperature occurred at summer (July to September) and low soil temperature happened at winter (December to February). Soil moisture followed the same trends, high in summer and low in winter. However, the soil moisture did not show clear zonal differences from north to south as the soil temperature showed. In the boreal forest, the higher soil moisture content occurred around July (Fig. 2b). Similar phenomenon also occurred in the temperate forest (Fig. 2b). The seasonality of soil moisture was well consistent with the seasonal patterns of soil temperature in the tropical forests, that is, when the maximum soil moisture occurred in summer soil temperature also reached the highest (Fig. 2b). However, soil moisture in the subtropical forest decreased in summer months, whereas the soil temperature reached the maximum (Fig. 2b). Average

²⁵ monthly precipitation showed similar pattern as soil moisture in four old-growth forests

(Fig. 2c). Both in growing and non-growing season, there was significant difference for soil temperature and moisture between the four old-growth forests (Table 2).

3.2 Seasonality of soil mineral N

The NH⁺₄-N concentration reached a maximum between April and May, and then followed by a substantial decrease at June in the tropical forest and a second NH⁺₄-N peak appeared between July and August when soil temperature was high in the whole year (Fig. 3a). The similar variations were found in the boreal and temperate forests (Fig. 3a). However, the NH⁺₄-N concentration remained relatively constant in subtropical forest in the whole year (Fig. 3a). In the growing season, there was significant difference for NH⁺₄-N concentration among forests (*P*<0.001), with the averages (2003 to 2005) 12.78±0.52 mgNkg⁻¹ in boreal, 9.25±0.66 mgNkg⁻¹ in temperate, 2.75±0.13 mgNkg⁻¹ in subtropical and 22.63±0.43 mgNkg⁻¹ in tropical forest (Table 2).

In contrast, the NO₃⁻-N concentration varied greatly in the subtropical forest com-¹⁵ pared with other forest sites (Fig. 3b). The peaks of soil NO₃⁻-N in the subtropical site occurred between June and August, and the lower values usually occurred in winter and early spring (Fig. 3b). The change of NO₃⁻-N concentration showed a similar pattern in the tropical forest, where the higher NO₃⁻-N concentration appeared in warm July and August (Fig. 3b). However, in the boreal and temperate forests the NO₃⁻-N concentration tended to decrease with the time firstly and then slightly rose in the late growing season (Fig. 3b). From 2003 to 2005, the mean NO₃⁻-N concentrations in the growing season were significantly different among four old-growth forests, following the trend of the subtropical (16.15±2.09 mg N kg⁻¹) > tropical (7.46±0.10 mg N kg⁻¹) > temperate (4.57±0.29 mg N kg⁻¹) > boreal (2.01±0.19 mg N kg⁻¹) (*P*<0.001) (Table 2).

3.3 Seasonality of CO₂ and CH₄ fluxes

25

Carbon dioxide emissions showed a consistent variation with soil temperatures, with the maximum in summer and minimum in winter for all forests (Fig. 4a). Seasonal differences of CO_2 emissions were more pronounced in the boreal and temperate forests

- ⁵ than in the tropical and subtropical forests (Fig. 4a). Although total soil CO₂ emissions increased in the growing season ranging from 15.78 to 23.19 Mg CO₂ ha⁻¹, the differences among the four forests were not significant (p>0.05, Table 2). In the nongrowing season, total CO₂ emissions in the boreal and temperature forests ranging from 2.31 to 3.28 Mg CO₂ ha⁻¹, which were significantly lower than those in the tropical and subtropical forests ranging from 12.21 to 12.86 Mg CO₂ ha⁻¹ (p<0.001, Table 2).
- Seasonality had significant impact on CH₄ emission and uptake. The higher uptake (i.e. negative CH₄ flux) and emission rates in the boreal and temperate forests were observed in summer and in winter, respectively (Fig. 4b). The subtropical forest soil behaved as net soil CH₄ uptake throughout the entire study period (Fig. 4b). There
 were significant differences for CH₄ fluxes between the growing and non-growing season for all four old-growth forests (Tables 2). In the non-growing season, the boreal forest behaved as CH₄ uptake ranging from -1.18 to -3.66 kg CH₄ ha⁻¹ (Table 2). However, in the growing season, only the tropical seasonal rain forest soil showed CH₄ emission with a mean of 1.18 kg CH₄ ha⁻¹, whereas the soil CH₄ uptake occurred in other forests ranging from -0.82 to -2.36 kg CH₄ ha⁻¹ (Fig. 4b and Table 2).

3.4 Relationships between soil temperature, soil moisture and soil C fluxes

Soil CO₂ emission rate was fitted with soil temperature in an exponential model and the results indicate that soil temperature explained 49–96% of CO₂ flux variation (Fig. 5a and Table 3). The average Q_{10} was significantly higher in the boreal (3.08) and temperate (2.61) than in the tropical (2.16) and subtropical forests (2.05) (Table 3). Un-

BGD 6, 7821-7852, 2009 Effects on CO₂ emission and CH₄ uptake H. Fang et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

like the exponential relationship between CO_2 flux and soil temperature, CO_2 flux and soil moisture had a positive linear relationship, explaining 40–49% of CO_2 variations (Fig. 5b and Table 3). These results showed that soil CO_2 emission was mainly driven by soil temperature followed by soil moisture.

- ⁵ For all forest, there seems to be a critical temperature value by which the relationship between soil CH₄ flux and soil temperature changes from the negative to the positive when soil temperature raised above this temperature value (Fig. 5c). This critical value increased with decreasing latitude. For instance, the value was about 7–8°C in the boreal and temperate forests, 16 to 18°C in the tropical and subtropical forest (Table 3).
- If all four forests included in the model, the relationship between CH₄ flux and soil temperature was fitted well with Gaussian equation and the average critical soil temperate was 15°C (Fig. 5c and Table 3). Except in boreal forest, significant positive relationship between CH₄ flux and soil moisture was found in other forests, explaining 18–42% of CH₄ variations (Fig. 5d and Table 3). These results indicate that the response of soil CH₄ variations (Fig. 5d and Table 3).
- ¹⁵ CH₄ uptake to warming depends upon soil temperature and decreases with increasing precipitation in old-growth forests in eastern China.

3.5 Relationships between soil mineral N and soil C fluxes

Soil CO₂ fluxes in the tropical and subtropical forests were positively correlated to the concentrations of NH_4^+ -N and NO_3^- -N in the top 10 cm soil (Fig. 6a, b, and Table 4). However, the relationships between soil CO₂ fluxes and mineral N concentrations were

- ²⁰ However, the relationships between soil CO₂ fluxes and mineral N concentrations were not statistically significant at the boreal and temperate forests (Fig. 6a and b). Additionally, a positive correlation between soil CH₄ flux and soil NH₄⁺-N was observed in the tropical forest (Fig. 6c and Table 4). In the boreal and tropical forests where CH₄ emission occurs periodically, soil CH₄ flux was positively correlated to the NO₃⁻-N con-
- ²⁵ centrations (Fig. 6d and Table 4). Taking all four forests together, soil CO_2 flux was positively related to soil NO_3^- -N concentration and soil CH_4 flux was positively related to NH_4^+ -N concentration (Fig. 6b, d, and Table 4). These results revealed that soil NO_3^- -N could promote soil CO_2 emission, while NH_4^+ -N could inhibit CH_4 uptake in the

old-growth forests in eastern China.

4 Discussions

4.1 Comparisons with other studies

The annual mean soil CO₂ emissions of 18.09±0.22 and 20.08 ± 1.20 Mg CO₂
ha⁻¹ yr⁻¹, respectively from the boreal and temperate forests (mean ± se) fall in the range of soil CO₂ emission rates of 11.59 to 40.15 Mg CO₂ ha⁻¹ yr⁻¹ reported by a number of studies worldwide (e.g. Borken and Brumme, 1997; Maljanen et al., 2001; Merino et al., 2004; Falk et al., 2005; Sulzman et al., 2005; Zerva and Mencuccini, 2005). However, the annual mean soil CO₂ emission of 35.40±2.42 and 34.54±4.99 Mg CO₂ ha⁻¹ yr⁻¹, respectively in the subtropical and tropical forests are higher than the reported average in an evergreen tropical forest on the island of Hawaii (26.34 Mg CO₂ ha⁻¹ yr⁻¹, Townsend et al., 1995) and in a tropical monsoon forest in Tainland (25.6 Mg CO₂ ha⁻¹ yr⁻¹, Hashimoto et al., 2004), but lower than that in subtropical moist forest, Queensland, Australia (51.07 Mg CO₂ ha⁻¹ yr⁻¹, Butterbach-Bahl
et al., 2004) and tropical forests of South America (36.94–52.68 Mg CO₂ ha⁻¹ yr⁻¹, Garcia-Montiel et al., 2004; Sotta et al., 2007).

The old-growth forest soils in eastern China represented efficient CH₄ uptake with the annual mean of -0.04 ± 0.11 kg CH₄ ha⁻¹ yr⁻¹ (boreal), -2.29 ± 0.70 kg CH₄ ha⁻¹ yr⁻¹ (temperate), -2.48 ± 1.07 kg CH₄ ha⁻¹ yr⁻¹ (tropical) and -5.15 ± 0.96 kg CH₄ ha⁻¹ yr⁻¹ (subtropical). The boreal forest soil took up CH₄ in the growing season (-0.82 ± 0.03 kg CH₄ ha⁻¹), but emitted CH₄ when soils were frozen in the non-growing season (0.78 ± 0.13 kg CH₄ ha⁻¹). This result was the same as that (-1.04-4.95 kg CH₄ ha⁻¹ yr⁻¹) found in typical boreal forest soils, Alaska and Canada (Simpson et al., 1997; Billings et al., 2000; Kim et al., 2007). Conversely, for the atmospheric CH₄ the tropical forest soil behaved as the uptake in the growing and as the emission in the

BGD 6, 7821–7852, 2009 Effects on CO₂ emission and CH₄ uptake H. Fang et al. Title Page Abstract Introduction

non-growing season, respectively. Our data in the temperate forest were in the same range $(-2.00 \sim -7.28 \text{ kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1})$ as found in Asia, Europe and USA (Teepe et al., 2004; Suwanwaree and Robertson, 2005; Jang et al., 2006; Morishita et al., 2007), and were less than the global average of $-5.60 \text{ kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$ (Jang et al., 2006). Additionally, CH₄ uptakes in the tropical and subtropical forest soils are comparable with that of other tropical forest soils ($-2.10 \sim -6.59 \text{ kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$, Verchot et al., 2000; Davidson et al., 2000; Silver et al., 2005; Ishizuka et al., 2005; Werner et al., 2006, 2007).

4.2 Effects of soil temperature and soil moisture on soil C fluxes

- ¹⁰ Based on the relationship between CO₂ emission and soil temperature and moisture, we can deduce that increasing air temperature and precipitation would increase soil CO₂ emission in the old-growth forests in eastern China in the future. The fact that no significant difference of soil CO₂ fluxes among the four old-growth forests in the growing season rather than the non-growing season indicates that the response of soil CO₂ emission to soil temperate was weak in higher than in lower temperature conditions. This phenomenon was comparable with the acclimation of soil respiration to elevated temperature in some warming experiments (Luo et al., 2001; Melillo et al., 2002). Additionally, some studies found that soil CO₂ emission increased with increasing soil moisture when soil moisture was within a site-specific threshold value,
- 20 generally up to 60% water-filled pore space (WFPS) (Xu and Qi, 2001; Rey et al., 2002). In our study, soil moisture contents across all four forest sites were generally less than 50% (w/w) in the whole year (Fig. 5b and d), which was equivalent to 55% of WFPS calculated from the equation described by Franzluebbers (1999).

Some studies suggested that CH_4 oxidation was usually less sensitive to soil temperature than to soil moisture (Price et al., 2004; Jang et al., 2006; Werner et al., 2006), and the effect of temperature was much weaker on CH_4 oxidation than on CH_4 production since methanotrophs have high affinity for CH_4 in air and low activation energy for CH_4 oxidation (Dunfield et al., 1993; Castaldi and Fierro, 2005; Borken et al., 2006).

When the diffusion rates of CH_4 and O_2 from the atmosphere into the soil are equal to soil CH_4 and O_2 consumption, soil CH_4 oxidation rates reach the maximum values at a given temperature. Cai and Yan (1999) called this temperature the critical temperature. The critical temperature for soil CH_4 oxidation varies with bioclimatic areas, ⁵ about 20–30°C in low latitude region (Boeckx and VanCleemput, 1996; Cai and Yan, 1999), 5–25°C in middle latitude region (Castro et al., 1995), and less than 10°C in high latitude region (van den Pol-van Dasselaar et al., 1998). Our results fall in the same ranges described above. When soil temperature is lower than the critical temperature, the CH₄ and O₂ diffusion rates are greater than soil CH₄ and O₂ consumption rates due to low soil microbial activities. Consequently, the ability of forest soils to oxidize 10 CH₄ is strongly correlated with soil temperature (Peterjohn et al., 1994; Nedwell and Watson, 1995; Prieme and Christensen, 1997). However, if soil temperature continually rises to superior the critical level, the reproduction and activity of methanotrophs in soils will gradually decrease because methanotrophs fail to compete with nitrifiers and other microbes for the limited oxygen in soil air (Horz et al., 2005; Castaldi and Fierro, 15 2005; Borken et al., 2006).

4.3 Effects of soil mineral N on soil CO₂ flux

The positive correlation between soil CO₂ fluxes and soil NO₃⁻-N concentrations across four forests suggests that NO₃⁻-N input from N deposition could promote forest soil
CO₂ emission. The ability of plants to compete available N (especially NO₃⁻-N) is often stronger than soil microorganisms in poor-N natural forest ecosystems (Jaeger et al., 1999). Therefore, the higher soil NO₃⁻-N concentration, the more total and fine root biomass of forests will be (Table 1); accordingly, this could partially contribute to the higher autotrophic respiration. However, excessive reactive N input will result in occurrence of ecosystem N saturation and decrease of fine root biomass, which will

decrease soil respiration (Mo et al., 2008). Therefore, we might deduce that old-growth forest ecosystem in subtropical region would be in N unsaturated status without exces-

sive input of atmospheric N deposition.

High soil NO_3^- -N content could increase litter decomposition rate due to the decline of its C/N ratio with more mineral N incorporated in organic matter (Berg et al., 1998; Hobbie and Gough, 2004). In addition, soil CO₂ fluxes were positively correlated to both

- ⁵ NO₃⁻-N and NH₄⁺-N in N-rich tropical and subtropical forests (Fig. 6a and b). This could be partially attributed to microbial immobilization of soil available N. Soil microbe needs more available C to immobilize redundant mineral N in N-rich forests, and this would stimulate soil microbial activity, elevate organic matter decomposition and increase heterotrophic respiration (McDowell et al., 2004). All these are consistent with experimental findings that N addition promoted soil respiration in N-limited forest ecosystems
- (Micks et al., 2004; McDowell et al., 2004).

4.4 Effects of soil mineral N on soil CH₄ flux

The positive relationship between soil NH⁺₄-N and soil CH₄ flux across forests suggests that elevated soil NH⁺₄-N content from N deposition could significantly inhibit methane
¹⁵ oxidation. This result was consisted with findings in many N addition experiments that adding N decreased CH₄ uptake from 14% to 51% relative to the control (e.g. King and Schnell, 1994; Sitaula et al., 1995; Gulledge et al., 2004; Zhang et al., 2008). Whalen et al. (1992) also estimated that the atmospheric N deposition could decrease forest soil CH₄ oxidation by 0.91 Tg CH₄ yr⁻¹ globally. High concentration of soil NH⁺₄N could significantly inhibit methanotrophic activities in soils because it stimulated the quantity of NH⁺₄-oxidizer bacteria in the organic layers of forest soil (King and Schnell, 1994; Whalen and Reeburgh, 2000). Both CH₄ oxidation and ammonium oxidation are controlled by monooxygenase enzymes, (soluble or particulate) methane monooxyge-

nase, and ammonium monooxygenase, respectively, which all require O_2 (Hanson and Hanson, 1996) or alternate electron acceptors such as Fe^{3+} , NO_3^- and SO_4^{2-} (Dale et al., 2006).

However, the positive relationship between soil NO_3^--N and soil CH_4 flux in the tropical and boreal forest sites was inconsistent with other studies (Dunfield et al., 1995;

Corton et al., 2000). Corton et al. (2000) noted that $(NH_4)_2SO_4$ addition could inhibit methane production, but NaNO₃, KNO₃ and urea have either transitory or no effect on CH₄ production. We deduced that this effect could result from the anaerobic environment in boreal forest in winter due to soil frozen and in tropical forest in rain season ⁵ due to waterlogging. In addition, hydroxylamine (NH₂OH) or nitrite (NO₂⁻) produced via NH₄⁺ oxidation and NO₃⁻ reduction could produce a toxic inhibition on CH₄ uptake (King and Schnell, 1994).

5 Conclusions

Soil CO₂ emissions of old-growth forests in eastern China were mainly driven by temperature, followed by soil moisture, NO_3^-N content. The sensitivity of CO_2 flux to soil 10 temperature (Q_{10}) tended to increase with the latitude. Considering the relationship of soil CO₂ emission to soil temperature, moisture and mineral N contents across forests, we can speculate that CO₂ fluxes between forest soils and the atmosphere will increase with increase in air temperature, precipitation and N deposition in the future. Moreover, the mechanism of NO₃⁻-N interaction with CO₂ emission could partially at-15 tribute to the compound effects of the stimulation of soil microbe activity to consume available C and the increased decomposability of organic materials due to decline in C/N ratio through N immobilization. The responses of soil CH_4 uptake to soil temperature vary with forest type, mainly dependent upon the critical temperature at each forest site. However, increasing precipitation and NH_4^+ -N will decrease soil CH_4 uptake in the 20 old-growth forests in eastern China. The mechanism of NH_4^+ inhibition on methane oxidation could include both a competitive inhibition of CH₄ mono-oxygenase enzyme and a toxic inhibition by hydroxylamine or nitrite produced via NH_4^+ oxidation.

BGD 6, 7821-7852, 2009 Effects on CO₂ emission and CH₄ uptake H. Fang et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Acknowledgements. This research was funded by National Natural Science Foundation of China (30600071, 40601097, 30590381), Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-432, O7V70080SZ, LENOM07LS-01) and the President Fund of GUCAS (085101PM03). All the experiments complied with the current laws of China.

5 References

20

- Berg, M. P., Kniese, J. P., Zoomer, R., and Verhoef, H. A.: Long-term decomposition of successive organic strata in a nitrogen saturated Scots pine forest soil, Forest Ecol. Manag., 107, 159–172, 1998.
- Bergner, B., Johnstone, J., and Treseder, K. K.: Experimental warming and burn severity alter
- soil CO-2 flux and soil functional groups in a recently burned boreal forest, Global Change Biol., 10, 1996–2004, 2004.
 - Billings, S. A., Richter, D. D., and Yarie, J.: Sensitivity of soil methane fluxes to reduced precipitation in boreal forest soils, Soil Biol. Biochem., 32, 1431–1441, 2000.
 - Boeckx, P. and VanCleemput, O.: Methane oxidation in a neutral landfill cover soil: Influence of
- moisture content, temperature, and nitrogen-turnover, J Environ. Qual., 25, 178–183, 1996.
 Borken, W. and Brumme, R.: Liming practice in temperate forest ecosystems and the effects on CO₂, N₂O and CH₄ fluxes, Soil Use Manage., 13, 251–257, 1997.
 - Borken, W., Davidson, E. A., Savage, K., Sundquist, E. T., and Steudler, P.: Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil, Soil Biol. Biochem., 38, 1388–1395, 2006.
- Bowden, R. D., Davidson, E., Savage, K., Arabia, C., and Steudler, P.: Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest, Forest Ecol. Manag., 196, 43–56, 2004.

Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S., Papen, H., and Kiese,

R.: Temporal variations of fluxes of NO, NO₂, N₂O, CO₂, and CH₄ in a tropical rain forest ecosystem, Global Biogeochem. Cy., 18, GB3012, doi:10.1029/2004GB002243, 2004.

Cai, Z. C. and Yan, X. Y.: Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition, Soil Biol. Biochem., 31, 715–725, 1999.

Castaldi, S. and Fierro, A.: Soil-atmosphere methane exchange in undisturbed and burned Mediterranean shrubland of southern Italy, Ecosystems, 8, 182–190, 2005. 6, 7821–7852, 2009

Effects on CO₂ emission and CH₄ uptake

H. Fang et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	PI					
•	•					
Back	Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D., and Bowden, R. D.: Factors Controlling Atmospheric Methane Consumption by Temperate Forest Soils, Global Biogeochem. Cy., 9, 1–10, 1995.

Chantigny, M. H., Angers, D. A., Prevost, D., Simard, R. R., and Chalifour, F. P.: Dynamics of

- soluble organic C and C mineralization in cultivated soils with varying N fertilization, Soil Biol. Biochem., 31, 543–550, 1999.
 - Corre, M. D., Brumme, R., Veldkamp, E., and Beese, F. O.: Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany, Global Change Biol., 13, 1509–1527, 2007.
- ¹⁰ Corton, T. M., Bajita, J. B., Grospe, F. S., Pamplona, R. R., Assis, C. A., Wassmann, R., Lantin, R. S., and Buendia, L. V.: Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines), Nutr. Cycl. Agroecosys., 58, 37–53, 2000.

Dalal, R. C. and Allen, D. E.: Greenhouse gas fluxes from natural ecosystems, Aust. J. Bot., 56, 369–407, 2008.

- ¹⁵ Dale, A. W., Regnier, P., and Van Cappellen, P.: Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis, Am. J. Sci., 306, 246–294, 2006.
 - Davidson, E. A., Ishida, F. Y., and Nepstad, D. C.: Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest,

²⁰ Global Change Biol., 10, 718–730, 2004.

25

- Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., and Veldkamp, E.: Testing a conceptual model of soil emissions of nitrous and nitric oxides, Bioscience, 50, 667–680, 2000.
- Dunfield, P., Knowles, R., Dumont, R., and Moore, T. R.: Methane Production and Consumption in Temperate and Sub-Arctic Peat Soils – Response to Temperature and Ph, Soil Biol. Biochem., 25, 321–326, 1993.
- Dunfield, P. F., Topp, E., Archambault, C., and Knowles, R.: Effect of Nitrogen Fertilizers and Moisture-Content on CH₄ and N₂O Fluxes in a Humisol Measurements in the Field and Intact Soil Cores, Biogeochemistry, 29, 199–222, 1995.

Falk, M., Kyaw, T. P., Wharton, S., and Schroeder, M.: Is soil respiration a major contributor to

the carbon budget within a Pacific Northwest old-growth forest?, Agr. Forest Meteorol., 135, 269–283, 2005.

Franzluebbers, A. J.: Microbial activity in response to water–filled pore space of variably eroded southern Piedmont soils, Appl. Soil Ecol., 11, 91–101, 1999.

BGD							
6, 7821–7852, 2009							
Effects on CO ₂ emission and CH ₄ uptake H. Fang et al.							
Title	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Tables Figures						
I	►I						
•	•						
Back	Close						
Full Screen / Esc							
Printer-friendly Version							
Interactive Discussion							

Garcia-Montiel, D. C., Melillo, J. M., Steudler, P. A., Tian, H., Neill, C., Kicklighter, D. W., Feigl,
B., Piccolo, M., and Cerri, C. C.: Emissions of N₂O and CO₂ from terra firme forests in Rondonia, Brazil, Ecol. Appl., 14, S214–S220, 2004.

Gulledge, J., Hrywna, Y., Cavanaugh, C., and Steudler, P. A.: Effects of long-term nitrogen

⁵ fertilization on the uptake kinetics of atmospheric methane in temperate forest soils, Fems Microb. Ecol., 49, 389–400, 2004.

Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Res., 60, 439–471, 1996.

Hobbie, S. E. and Gough, L.: Litter decomposition in moist acidic and non-acidic tundra with different glacial histories, Oecologia, 140, 113–124, 2004.

10

Horz, H. P., Rich, V., Avrahami, S., and Bohannan, B. J. M.: Methane-oxidizing bacteria in a California upland grassland soil: Diversity and response to simulated global change, Appl. Environ. Microb., 71, 2642–2652, 2005.

Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H., and Murdiyarso,

D.: The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia, Nutr. Cycl. Agroecosys., 71, 17–32, 2005.

Jaeger, C. H., Monson, R. K., Fisk, M. C., and Schmidt, S. K.: Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem, Ecology, 80, 1883–1891, 1999.
Jang, I., Lee, S., Hong, J. H., and Kang, H. J.: Methane oxidation rates in forest soils and their

²⁰ controlling variables: a review and a case study in Korea, Ecol. Res., 21, 849–854, 2006. Jiang, H., Apps, M. J., Peng, C. H., Zhang, Y. L., and Liu, J. X.: Modelling the influence of harvesting on Chinese boreal forest carbon dynamics, Forest Ecol. Manag., 169, 65–82, 2002.

Kim, Y., Ueyama, M., Nakagawa, F., Tsunogai, U., Harazono, Y., and Tanaka, N.: Assessment

of winter fluxes of CO₂ and CH₄ in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget, Tellus B, 59, 223–233, 2007.

King, G. M. and Schnell, S.: Effect of Increasing Atmospheric Methane Concentration on Ammonium Inhibition of Soil Methane Consumption, Nature, 370, 282–284, 1994.

³⁰ Kleja, D. B., Svensson, M., Majdi, H., Jansson, P. E., Langvall, O., Bergkvist, B., Johansson, M. B., Weslien, P., Truusb, L., Lindroth, A., and Agren, G. I.: Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden, Biogeochemistry, 89, 7–25, 2008. BGD

6, 7821–7852, 2009

Effects on CO₂ emission and CH₄ uptake

H. Fang et al.

- Lloyd, J. and Taylor, J. A.: On the Temperature-Dependence of Soil Respiration, Funct. Ecol. 8, 315–323, 1994.
- Lu, C. Q. and Tian, H. Q.: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data, J. Geophys. Res., 112, D22S05, doi:10.1029/2006JD007990, 2007.

5

20

- Luo, Y. Q., Wan, S. Q., Hui, D. F., and Wallace, L. L.: Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 413, 622–625, 2001.
- Luyssaert, S., Schulze, E. D., Borner, A., Knohl, A., Hessenmoller, D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455, 213–215, 2008.
- ¹⁰ Maljanen, M., Hytonen, J., and Martikainen, P. J.: Fluxes of N₂O, CH₄ and CO₂ on afforested boreal agricultural soils, Plant Soil, 231, 113–121, 2001.
 - McDowell, W. H., Magill, A. H., Aitkenhead-Peterson, J. A., Aber, J. D., Merriam, J. L., and Kaushal, S. S.: Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution, Forest Ecol. Manag., 196, 29–41, 2004.
- ¹⁵ Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P., Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S.: Soil warming and carbon-cycle feedbacks to the climate system, Science, 298, 2173–2176, 2002.
 - Merino, A., Perez-Batallon, P., and Macias, F.: Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe, Soil Biol. Biochem., 36, 917–925, 2004.
 - Micks, P., Aber, J. D., Boone, R. D., and Davidson, E. A.: Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests, Forest Ecol. Manag., 196, 57–70, 2004.
- Mo, J., Zhang, W., Zhu, W., Gundersen, P., Fang, Y., Li, D., and Wang, H.: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China, Global Change Biol., 14, 403–412, 2008.
 - Morishita, T., Sakata, T., Takahashi, M., Ishizuka, S., Mizoguchi, T., Inagaki, Y., Terazawa, K., Sawata, S., Igarashi, M., Yasuda, H., Koyama, Y., Suzuki, Y., Toyota, N., Muro, M., Kinjo, M., Yamamoto, H., Ashiya, D., Kanazawa, Y., Hashimoto, T., and Umata, H.: Methane uptake and
- ³⁰ nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types, Soil Sci. Plant Nutr., 53, 678–691, 2007.
 - Nedwell, D. B. and Watson, A.: CH₄ Production, Oxidation and Emission in a Uk Ombrotrophic Peat Bog: Influence of SO²₄ from Acid Rain, Soil Biol. Biochem., 27, 893–903, 1995.

BGD							
6, 7821–7852, 2009							
Effects on CO ₂ emission and CH ₄ uptake							
H. Fang et al.							
T	Desig						
litie	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
I4	►1						
•	•						
Back	Back Close						
Full Screen / Esc							
Printer-friendly Version							
Interactive Discussion							

Peterjohn, W. T., Melillo, J. M., Steudler, P. A., Newkirk, K. M., Bowles, F. P., and Aber, J. D.: Responses of Trace Gas Fluxes and N Availability to Experimentally Elevated Soil Temperatures, Ecol. Appl., 4, 617–625, 1994.

Prescott, C. E., Kabzems, R., and Zabek, L. M.: Effects of fertilization on decomposition rate of Populus tremuloides foliar litter in a boreal forest, Can. J. Forest Res., 29, 393–397, 1999.

- Populus tremuloides foliar litter in a boreal forest, Can. J. Forest Res., 29, 393–397, 1999. Price, S. J., Kelliher, F. M., Sherlock, R. R., Tate, K. R., and Condron, L. M.: Environmental and chemical factors regulating methane oxidation in a New Zealand forest soil, Aust. J. Soil Res., 42, 767–776, 2004.
 - Prieme, A. and Christensen, S.: Seasonal and spatial variation of methane oxidation in a Danish spruce forest, Soil Biol. Biochem., 29, 1165–1172, 1997.
- Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P. G., and Valentini, R.: Annual variation in soil respiration and its components in a coppice oak forest in Central Italy, Global Change Biol., 8, 851–866, 2002.

10

25

Silver, W. L., Thompson, A. W., McGroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill,

- P. M., and Keller, M.: Fine root dynamics and trace gas fluxes in two lowland tropical forest soils, Global Change Biol., 11, 290–306, 2005.
 - Simpson, I. J., Edwards, G. C., Thurtell, G. W., den Hartog, G., Neumann, H. H., and Staebler, R. M.: Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest, J. Geophys. Res., 102, 29331–29341, 1997.
- 20 Sitaula, B. K., Bakken, L. R., and Abrahamsen, G.: CH₄ Uptake by Temperate Forest Soil Effect of N Input and Soil Acidification, Soil Biol. Biochem., 27, 871–880, 1995.
 - Sotta, E. D., Veldkamp, E., Schwendenmann, L., Guimaraes, B. R., Paixao, R. K., Ruivo, M. D. L. P., Da Costa, A. C. L., and Meir, P.: Effects of an induced drought on soil carbon dioxide (CO₂) efflux and soil CO₂ production in an Eastern Amazonian rainforest, Brazil, Global Change Biol., 13, 2218–2229, 2007.
 - Sulzman, E. W., Brant, J. B., Bowden, R. D., and Lajtha, K.: Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO₂ efflux in an old growth coniferous forest, Biogeochemistry, 73, 231–256, 2005.

Suwanwaree, P. and Robertson, G. P.: Methane oxidation in forest, successional, and no-till agricultural ecosystems: Effects of nitrogen and soil disturbance, Soil Sci. Soc. Am. J., 69,

1722–1729, 2005. Tang, X. L., Liu, S. G., Zhou, G. Y., Zhang, D. Q., and Zhou, C. Y.: Soil-atmospheric exchange of CO₂, CH₄, and N₂O in three subtropical forest ecosystems in southern China, Global H. Fang et al.

uptake

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	•					
•	$(\mathbf{x},\mathbf{y}) \in [0,\infty)$					
Back Close						
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

Change Biol., 12, 546–560, 2006.

Teepe, R., Brumme, R., Beese, F., and Ludwig, B.: Nitrous oxide emission and methane consumption following compaction of forest soils, Soil Sci. Soc. Am. J., 68, 605–611, 2004.

Tessier, J. T. and Raynal, D. J.: Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation, J. Appl. Ecol., 40, 523–534, 2003.

 indicator of nutrient limitation and nitrogen saturation, J. Appl. Ecol., 40, 523–534, 2003.
 Townsend, A. R., Vitousek, P. M., and Trumbore, S. E.: Soil Organic-Matter Dynamics Along Gradients in Temperature and Land-Use on the Island of Hawaii, Ecology, 76, 721–733, 1995.

van den Pol-van Dasselaar, A., van Beusichem, M. L., and Oenema, O.: Effects of soil moisture

- content and temperature on methane uptake by grasslands on sandy soils, Plant Soil, 204, 213–222, 1998.
 - Verchot, L. V., Davidson, E. A., Cattanio, J. H., and Ackerman, I. L.: Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia, Ecosystems, 3, 41–56, 2000.
- ¹⁵ Wang, Y. S. and Wang, Y. H.: Quick measurement of CH₄, CO₂ and N₂O emissions from a short-plant ecosystem, Adv. Atmos. Sci., 20, 842–844, 2003.
 - Werner, C., Kiese, R., and Butterbach-Bahl, K.: Soil-atmosphere exchange of N₂O, CH₄, and CO₂ and controlling environmental factors for tropical rain forest sites in western Kenya, J. Geophys. Res., 112, D03308, doi:10.1029/2006JD007388, 2007.
- Werner, C., Zheng, X. H., Tang, J. W., Xie, B. H., Liu, C. Y., Kiese, R., and Butterbach-Bahl, K.: N₂O, CH₄ and CO₂ emissions from seasonal tropical rainforests and a rubber plantation in Southwest China, Plant Soil, 289, 335–353, 2006.
 - Whalen, S. C. and Reeburgh, W. S.: Methane oxidation, production, and emission at contrasting sites in a boreal bog, Geomicrobiol. J., 17, 237–251, 2000.
- Whalen, S. C., Reeburgh, W. S., and Barber, V. A.: Oxidation of Methane in Boreal Forest Soils
 a Comparison of 7 Measures, Biogeochemistry, 16, 181–211, 1992.
 - Xu, M. and Qi, Y.: Soil-surface CO₂ efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California, Global Change Biol., 7(6), 667–677, 2001.
 Yu, G. R., Song, X., Wang, Q. F., Liu, Y. F., Guan, D. X., Yan, J. H., Sun, X. M., Zhang, L. M.,
- and Wen, X. F.: Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables, New Phytol., 177, 927–937, 2008.
 - Zerva, A. and Mencuccini, M.: Short-term effects of clearfelling on soil CO₂, CH₄, and N₂O fluxes in a Sitka spruce plantation, Soil Biol. Biochem., 37, 2025–2036, 2005.

BGD						
6, 7821–7852, 2009						
Effects on CO ₂ emission and CH ₄ uptake H. Fang et al.						
Title	Page					
Abstract	Introduction					
Conclusions	References					
Tables	Tables Figures					
I	FI					
•	•					
Back Close						
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

Zhang, J. H., Han, S. J., and Yu, G. R.: Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest, Agr. Forest Meteorol., 137, 150–165, 2006.

Zhang, W., Mo, J. M., Zhou, G. Y., Gundersen, P., Fang, Y. T., Lu, X. K., Zhang, T., and Dong,

5 S. F.: Methane uptake responses to nitrogen deposition in three tropical forests in southern China, J. Geophys. Res., 113, D11116, doi:10.1029/2007JD009195, 2008.

Zhou, G. Y., Liu, S. G., Li, Z., Zhang, D. Q., Tang, X. L., Zhou, C. Y., Yan, J. H., and Mo, J. M.: Old-growth forests can accumulate carbon in soils, Science, 314, 1417–1417, 2006.

Table 1. Descriptions of the four old-growth forest ecosystem sites.

Dinghushan ^{a,b} Sites Daxinganling ^a Changbai Xishuang shan ^a banna^{a,c} Boreal Temperature Tropic Forest type Subtropical coniferous mixed everareen seasonal broadleaved rain forest forest forest forest Stand age (yr) 180 150 400 200 50°56′ N. 42°24′ N. 23°10′ N. 21°56′ N. Location 121°30' E 128°05' E 112°34' E 101°16′ E Elevation (m) 810 740 300 720 Mean annual temperature (°C) -5.42.8 20.9 21.4 Annual precipitation (mm) 500 750 1564 1557 N deposition (kg N ha⁻¹ yr⁻¹) 8.50 17.63 38.40 18.09 Biomass (Mg C ha⁻¹) 56.1 67.2 73.5 87.7 Fine root biomass (Mg C ha⁻¹) 2.40 2.82 4.90 3.06 Litter input (Mg C ha⁻¹ yr⁻¹) 2.50 4.52 8.42 11.56 Gravel (0.2-2 mm, %) 11.16 12.82 34.30 7.58 Sand (0.02–0.2 mm, %) 51.76 19.72 19.65 17.10 Silt (0.002-0.02 mm, %) 27.55 41.97 19.65 20.93 9.53 25.49 26.22 54.39 Clay (<0.002 mm, %) SOC density $(0-20 \text{ cm}, \text{kg m}^{-2})$ 14.62 11.5 8.8 7.53 Total N (g kg⁻¹) 1.83 1.18 2.5 1.45 C/N 25.14 21.84 12.8 11.33 Soil pH 6.03 5.85 3.80 4.75

Data source: ^a database of Chinese Ecosystem Research Network (CERN), ^b Tang et al. (2006), ^c Sha et al. (2005).

BGD

6, 7821-7852, 2009

BGD

6, 7821–7852, 2009

Effects on CO₂ emission and CH₄ uptake

H. Fang et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	▶1					
•	•					
Back	Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

Table 2. Effects of forest type and season on the mean (standard error) of soil temperature, moisture, mineral N concentrations and soil-atmospheric C exchanges.

Forest	Soil tem	perature	Soil m	oisture	NH ₄ ⁺ -N	content	NO ₃ -N	l content	Soil C	O ₂ flux	Soil C	H ₄ flux
sites	(°(C) ^f	(9	%)	$(mg kg^{-1})$		$(mg kg^{-1})$		$(MgCO_2 ha^{-1})$		$(\text{kg}\text{CH}_4\text{ha}^{-1})^{\text{e}}$	
	non- growing	growing	non- growing	growing	non- growing	growing	non- growing	growing	non- growing	growing	non- growing	growing
Boreal	-5.75 (0.75) C	8.15 (1.10) D	17.07 (2.15) B	36.88 (1.30) AB	-	12.78 (0.80) B	-	2.01 (0.19) C	2.31 (0.03) B	15.78 (0.21) A	0.78 (0.13) A	-0.82 (0.03) AB
Tempe- rate	-1.71 (0.61) B	12.29 (0.98) C	25.87 (3.29) A	42.25 (4.31) A	-	9.25 (0.66) C	-	4.57 (0.29) BC	3.28 (0.29) B	16.80 (0.94) A	-1.18 (0.96) AB	-1.11 (0.79) AB
Sub tropical	16.38 (0.77) A	25.20 (0.48) A	20.71 (2.29) AB	29.75 (1.76) B	1.79 (0.10)	2.75 (0.13) D	5.21 (0.68)	16.15 (2.09) A	12.21 (1.20) A	23.19 (1.58) A	-2.79 (0.47) B	-2.36 (0.49) B
Tropical	16.09 (0.60) A	22.11 (0.22) B	22.27 (2.16) AB	39.77 (1.06) A	18.75 (1.10)	22.63 (0.43) A	5.86 (0.26)	7.46 (0.10) B	12.86 (1.93) A	21.68 (3.08) A	-3.66 (0.59) B	1.18 (1.64) A

^e Negative CH_4 values are CH_4 uptake. ^f Means followed by different letters in the same column are significantly different (Turky's HSD comparison).

Forest	а	b	T_0^g	p	R^2	MSE	Q ₁₀
(a) $F_{CO_2} = a^* e$	$xp(b^*T)$						
Boreal	124.17	0.11		<0.0001	0.96	41.13	3.08
Temperate	106.11	0.10		<0.0001	0.85	75.81	2.61
Subtropical	85.41	0.07		0.001	0.61	116.42	2.05
Tropical	87.53	0.08		0.003	0.49	103.97	2.16
All forests	147.09	0.05		<0.0001	0.65	120.07	1.70
(b) <i>F</i> _{CO2} = <i>a</i> + <i>b</i>	b*M						
Boreal	-91.28	11.16		<0.0001	0.45	157.59	
Temperate	-29.62	7.56		<0.0001	0.49	140.35	
Subtropical	67.63	13.29		<0.0001	0.49	132.60	
Tropical	146.44	7.96		<0.0001	0.40	113.69	
All forests	72.03	8.06		<0.0001	0.29	172.03	
(c) <i>F</i> _{CH₄} = <i>a</i> *e	xp(-0.5*((7	$(T - T_0)/b)^2$					
Boreal	-0.05	2.53	7.30	0.04	0.17	0.04	
Temperate	-0.04	4.19	7.78	0.004	0.31	0.03	
Subtropical	-0.07	9.25	17.98	0.004	0.82	0.03	
Tropical	-0.11	2.70	15.67	0.0003	0.61	0.05	
All forests	-0.05	8.25	15.25	<0.0001	0.37	0.05	
(d) <i>F</i> _{CH₄} = <i>a</i> + <i>b</i>	b* M						
Boreal	0.04	-0.002		0.002	0.25	0.035	
Temperate	-0.02	0.0003		0.063	0.18	0.033	
Subtropical	-0.09	0.001		0.008	0.19	0.027	
Tropical	-0.17	0.005		<0.0001	0.42	0.063	
All forests	-0.05	0.007		0.0134	0.28	0.048	

Table 3. Parameter values of the models for the relationship between the soil CO_2 and CH_4 emissions and soil temperature (*T*) and moisture (*M*) at the top 10 cm soil layer.

 ${}^{g}\mathcal{T}_{0}$ is the critical soil temperature at which soil CH₄ oxidation rates reach the maximum values.

BGD

6, 7821-7852, 2009

Effects on CO₂ emission and CH₄ uptake

Forest	а	b	р	R^2	MSE				
(a) $F_{CO_2} = a + b^* NH_4^+$									
Subtropical	295.71	54.40	0.03	0.14	169.14				
Tropical	39.26	17.13	0.001	0.27	124.81				
(b) $F_{CO_2} = a + k$	$5^* NO_3^-$								
Subtropical	291.62	11.61	0.0007	0.31	151.12				
Tropical	30.73	54.63	0.0004	0.32	120.85				
All forests	307.44	11.44	<0.0001	0.17	152.96				
(c) $F_{CH_4} = a + b$	(c) $F_{CH_{4}} = a + b^* NH_4^+$								
Tropical	-0.23	0.010	0.001	0.28	0.071				
All forests	-0.064	0.003	0.0006	0.11	0.059				
(d) $F_{CH_4} = a + b^* NO_3^-$									
Boreal	-0.048	0.014	0.02	0.24	0.039				
Tropical	-0.238	0.032	0.0003	0.32	0.069				

Table 4. Model parameters and coefficients for the relationship between the soil CO₂ and CH₄

fluxes and soil mineral N concentrations at the top 10 cm soil layer.

_

7846

Fig. 1. Spatial distribution of soil CO₂ and CH₄ fluxes measurement sites in Eastern China.

BGD

6, 7821–7852, 2009

Effects on CO₂ emission and CH₄ uptake

H. Fang et al.

Fig. 5. Relationships of CO_2 and CH_4 fluxes to soil temperature and moisture at 10 cm below surface in the four forests.

Fig. 6. Relationships of CO_2 and CH_4 fluxes to soil NH_4^+ -N and NO_3^- -N at 10 cm below surface in the four forests.

Printer-friendly Version

Interactive Discussion

BGD